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Abstract

The thermo-fluid dynamic field arising on a thick and thermal conductive semi-infinite flat plate is studied when, on one
of its sides, a viscous fluid is impulsively accelerated. The case of adiabatic conditions on the unwetted side of the plate is
presented. This condition is also representative of symmetrical flow (with respect to the plate axis) around a thick plate with
both sides wetted by the fluid. The adopted model, which has been developed in the case of Prandtl number equal to one, is
based on an integral formulation of the governing equations. It has been already applied to the case of isothermal condition
on the plate side; however main differences characterize the present more complex problem since the governing equations
lead to a second-order hyperbolic equation in the space-time variables instead of a first-order one. The solution has been
obtained by the Laplace’s transformation technique. The effects of the main physical parameters on the temperature
behavior at the solid—fluid interface are shown and discussed. The solution accuracy has been verified by comparing the
results to those of the limiting case of plate of infinite length. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

In order to analyze the thermo-fluid dynamic
boundary layer around a body wetted by a viscous fast
fluid, it is necessary to assign a thermal boundary con-
dition along the body. Simple conditions are those of
constant temperature or zero heat flux at the wall. A
more realistic condition is to impose the continuity of
these two functions across the solid—fluid interface; this
problem is named conjugated heat transfer. The thermo-
fluid dynamic field, studied by means of this condition
and coupling the phenomenon of the conduction in the
solid body to the conduction and convection in the fluid,
was analyzed by many authors for steady regimes. The
first studies were those of Luikov [1]; afterwards useful
simplifications were suggested, e.g., [2] and, more re-
cently, numerical methods were also used [3].

The main interest in the present problem is driven by
the aerospace industry, especially in the study of high-
speed aircrafts and rockets, but applications can also be
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found in other fields such as in the food-freezing in-
dustry [4].

Only few works have been written for unsteady
conjugated heat transfer problems. An exact solution is
given in [5] for the impulsive laminar flow along an in-
finite thick flat plate. The case of a semi-infinite flat
plate, with Prandtl number (Pr) equal to one, was
studied in [6] by a low order method and in [7] by a more
accurate method taking also into account the energy
equation in the fluid. In these works the authors as-
sumed that the unwetted side of the plate is kept at a
constant temperature.

In the present paper we study the same impulsive
flow with Pr =1 and the same geometry considered in
the previous two papers with a different boundary con-
dition: we assume that the unwetted side of the plate is
adiabatic. This case is even more useful for the appli-
cations because it also includes the case of flow along
symmetrical bodies: in fact the symmetry leads to a zero
derivative, with respect to the normal axis, of the tem-
perature on the symmetry plane.

We continue to neglect, as generally done in the lit-
erature, some important aspects of the phenomenon.
For example we do not consider the initial “transitory
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regime” of the present “unsteady” flow: in this way a
jump in the temperature at the initial time appears which
substitutes the real short transitory regime characterized
by an own characteristic time. Its study is beyond the
purposes of the present work which instead concentrates
on the analysis of the main properties of the physical
problem and on the determination of the parameters
ruling the phenomenon.

Similar considerations can be made for the leading
edge of the plate where a singular behavior exists.
Moreover we assume that the thicknesses of the thermal
and enthalpic boundary layers are equal in the present
case of Pr = 1. A more general analysis would be conve-
nient when the influence of the Prandtl number is studied.

Two non-dimensional parameters #; (ratio of the
characteristic times in the fluid and in the solid) and p
(related to the thermal conductivities of the solid and of
the fluid, to the Reynolds number and to the slenderness
of the plate) rule the phenomenon such as for the iso-
thermal condition.

For solving this problem we use the same physical-
mathematical model of [7] based on an integral formu-
lation of the boundary layer equations and of the energy
equation in the solid in which the axial conduction has
been neglected. Unlikely, the simple modification of the
boundary condition leads to a final equation governing
the problem completely different and more complex than
that obtained in the case of constant temperature: in fact
now we must solve a second-order hyperbolic partial
differential equation instead of a first-order one and its
solution required the application of a different math-
ematical method.

The governing equations are expanded in a power
series and the first-order of this expansion has been
solved in an exact analytical form. Although here only
the first-order solution is studied, the higher-order ap-
proximations can be derived and can play an important
role in particular conditions as described in the discus-
sion of the method.

The determination of the solution was non-trivial due
to the mathematical difficulties induced by the presence
of two regions in which the scale factor of the dynamic
boundary layer has different expressions. In a so-called
“transition” region the solution depends both on space
and time, in the “asymptotic” region it only depends on
time and the problem is equivalent to the plate of infinite
length studied in [5]. The equations have been separately
solved in the two zones with a proper boundary con-
dition required for coupling the solutions along the first
characteristic line of the momentum equation which
specifies the border between the asymptotic and transi-
tion regions. The second-order ordinary equation gov-
erning the asymptotic region has been solved by the
invariant method while the more complex problem of
the transition region (second-order partial differential
equation) has been solved by Laplace transforms.

The solution accuracy has been verified by compar-
ing present results to the “‘exact” solution [5] in the
asymptotic region.

A number of differences with respect to the previ-
ously analyzed case has been found as will be evidenced
in the remaining of the paper.

2. Governing equations

The geometry of the flow is sketched in Fig. 1. At the
initial time ¢ =0 a fluid at rest with Prandtl number
equal to one is impulsively accelerated to a constant
speed U, over a semi-infinite, two-dimensional flat plate
whose thickness is b. The initial temperature field is
uniform in both the fluid and the solid and is
T(x,y,07) = T, where the subscript co denotes free-
stream conditions. The unwetted plate side is adiabatic.
Moreover, in the present model problem, we assume a
uniform flow which invests the plate; therefore, at the
plate leading edge, a boundary layer with O thickness
arises. The outer inviscid solution is uniform flow (no
shocks or expansions) and, in the boundary layer, the
pressure field is also uniform.

We consider here a compressible laminar boundary
layer arising near the plate. The flow equations can be
simplified by adopting the Stewartson—-Doronitsyn
transformation

¥
n=/ Loy, v=Lovtn o, (1)
0 P P
with u and v the velocity components, while the sub-
scripts specify partial derivation with respect to the in-
dicated wvariable. This transformation allows the
continuity and momentum equation to be decoupled
from the energy equation if p/p,=7T./T =
oo/l = A /A, Where p, T, pu, A are, respectively, the
density, temperature, viscosity and conductivity of the

yA

Ty (1)

v

STy =0

Fig. 1. The geometry of the problem.
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fluid. With these assumptions the flow equations reduce
to the usual incompressible expression of Prandtl’s
boundary layer equations that have to be solved to-
gether with the heat equation in the solid. On the solid—
fluid interface the continuity of the temperature and of
the heat flux need to be imposed. The boundary layer
equations to be solved are

u, +V, =0,
uy + v, + Vi, = ﬁ—o"uw, (2)

oo

St + qu + VSq = (xoosvma

where S = H,,« — H,, is the total enthalpy referenced to
the free stream value and o, is the free-stream thermal
diffusivity. The energy equation in the solid is

0
=T = sv2Ts7 3
5 = (3)
where T; is the temperature in the solid and o its dif-
fusivity. The boundary conditions we associate with
Egs. (2) and (3) are given by conditions concerning the
fluid field:

u(x,oo,t*) = UOC7 S(xaoo7t) :03
u(x,0,1) = V(x,0,1) = 0, (4)
u(x,y,0) =0, T(x,»,07) =T,

on the solid field:

T(x,»,07) = T, Tiy(x,=b,t7) =0 (5)

and at the solid—fluid interface:
TS(-x7 07 t) = T(x1 01 t)u

0 0 6
As=—Ty(x,0,8) = 2r—T(x,0,1), (6)

oy Oy
where the subscript f specifies fluid property.

The solution method starts [8] from an expansion
that reduces from 3 to 2 the number of the independent
variables using the Taylor formula in terms of a new
variable Z(n) for expressing the unknowns. With a
suitable approximated expression of the remainder, the
Taylor formula gives:

WX, Z,0) =2+ > g(X,0(Z - 27,

i=1

n—1 (7)
STX,Z1) =) qiX,0)(Z -2,

=0
where ut =u/U,, ST =S/H., Z(z) = erf(z), (erf de-
notes the error function), z= (yv/Res)/(Lh(X,7)),
(Res, = pUsL/ 11, is the Reynolds number), X = x/L,
1 =1L/U,, L is the axial reference length and
1ot 1 oSt

gi(Xu T) - l' oZi (X707T)7 qi(X7 T) :ﬁ oZi

n—1

X,0,7),
(8)

h(X, 1) is an unknown scale factor; gy and ¢, are related
to the unknown temperature and heat flux distributions
on the plate wall since ¢o=S; =7T,/Tw—1 and
q1 = SZW = (T/Taw)z_o with Ty = Too[1 + (7 — 1)/2M320L
where the subscript w specifies conditions at the solid—
fluid interface, M, is the free-stream Mach number and
T.w 1s the adiabatic wall temperature in the case of a
steady flow over a plate of infinitely small thickness.
Finally the integral formulation of the momentum
and energy balance Eq. (2) provides the following
equations:

LIy T

0 — + _Ly
+6X {h/o u (1 —u )dz} = 7 e (9.a)
0 X o 0 X et I
3 {h /0 S dz} + i {h /0 utSTdz| = hS"'w'

The interested reader is addressed to [7] for a more de-
tailed derivation of the equations that determine the
unknown /4, g; and g;.

In Eq. (7) it is assumed that the thicknesses of the
dynamic and enthalpic boundary layers are the same or,
equivalently, that the scale factor 4(X, ) is the same for
both layers (this assumption is correct in the case of Pr=1
for the isothermal plate when S is proportional to u).

Sufficiently accurate results can be expected even with
n = 1. Infact the choice of Z(z) = erf(z) is not casual
since, with n =1, it provides the exact solution of a
Rayleigh flow representing the asymptotic behaviour,
for X — oo, of the present flow as it will be discussed in
the next section.

This first-order representation, with u™ and S* defi-
nitely monotonic, is not accurate in the representation of
nearly separating u™ profiles, which is not the case of the
present flow or, in the thermal field, for a plate of infi-
nitely small thickness. Infact, in this case, the adiabatic
condition must be imposed at the solid-fluid interface
where the S profile is also characterized by an inflection
at Z =0. For this condition higher-order approxima-
tions are expected to be necessary. In the present case of
plate of finite thickness the solid—fluid interface is not
adiabatic and we again expect a good modeling by the
present method.

To complete the model description we need to con-
sider the energy equation in the solid and formulate the
thermal coupling conditions in order to obtain a prob-
lem only in terms of unknowns of the fluid field. An
integral modeling of the conductive phenomena in the
solid plate has been proposed in [5] for 5/L < 1. In this
case, by neglecting terms with order larger than (b/L)2
(i.e., the axial conduction in the energy equation for the
solid is not taken into account), the heat equation in the
solid can be written as

(9.b)
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2
= (10)
This equation can accurately describe the thermal field
in the solid with the exception of a region very near the
leading edge of the plate where the axial conduction
cannot be neglected. The Eq. (10) is solved by means of
an integral method requiring its integration with respect
to y and a suitable assumption on the temperature dis-
tribution along y in the solid (see [5] for further details).
The integration of this equation with respect to y be-
tween —b and 0, together with the second equation in
Eq. (5), leads to

o [0 1T,
&LTsdy‘“S(ayZ)w' ()

By assuming a linear distribution of the thermal gradient
in the solid:

oT, (0T y
5 (5).043) (2
we obtain
oT, b* [ O*T, o7,
(%), -5 (5),(3). (3

Eq. (13) can be expressed only in terms of the temper-
ature and its derivatives in the fluid field by imposing at
the solid-fluid interface the continuity of the tempera-
ture and of the heat flux (Eq. (6)):

34
= Tow — Ty = 31T, 14
b j.f 5 T, fs Ly, ( )

where

o L o
fs — Uoc b2

is the ratio between the characteristic times of the fluid
and of the solid.

3. The first-order solution

The impulsive dynamic boundary layer over the flat
plate has been studied by many authors (see [9,10]
among others); here we adopted a method which is
consistent with the present formulation [11].

A first-order approximation of the velocity and
temperature field in the boundary layer is obtained by
using n = 1 in Eq. (7) only for calculating the left-hand
side of Egs. (9.a) and (9.b), while the right-hand side is
expressed directly in terms of the unknowns g;, ¢;.

The integration of the integral momentum Eq. (9.a)
provides the scale factor of the dynamic boundary layer

hZ(X,r):4178<%7X)Un<%f)(>, (15)

with U, the Heaviside step function. In order to calcu-
late the thermo-fluid dynamic field this solution is
already sufficiently accurate; in [11] the convergence
toward the exact solution by increasing n was shown.

In the first-order approximation the dynamic
boundary layer is characterized by two regions (see Fig.
2) separated by the characteristic line of the momentum
equation X = t/2. For X > t/2 (h = 24/7) the velocity
only depends on time (asymptotic region); it is not in-
fluenced by the leading edge and describes a Rayleigh-
type flow. For X < 1/2 (h = V/8X) the velocity field only
depends on X (steady region) and represents a Blasius-
type flow.

In the first-order approximation the energy Eq. (9.b)
and the thermal boundary condition Eq. (14) can be
written in terms of the unknowns ¢y and ¢; in the fol-
lowing form:

(hqo), +@(}NIO)X = *%417
' (16)

3 q1 - q1
s = (), =35
with ¢; = [;°(1 — Z') dz and
b s
p:zﬂ—\/Reoo(Clzl/\/;v €= (2/7-[))

p and t are the non-dimensional parameters ruling the
physical problem. In the isothermal case [7] the problem
reduced to a first-order hyperbolic equation, on the
contrary, we have here a system of two equations that
leads to a second-order hyperbolic equation. A new
mathematical method of integration is necessary and
differences in the physics of the problem can be expected.

In order to associate the boundary conditions with Eq.
(16) for the unknowns ¢p and ¢, att =0and at X =0, a

2.0

05 B

0.0 I I I
0.0 0.5 ]19 15 20

Fig. 2. (X, 1) plane: (I) asymptotic region; (II|JIII) transition
region. Thick line — characteristic curve of the momentum
equation (X = t/2); thin line — characteristic curve of the energy
equation in the transition region (X = ((c2 — ¢1)/c1)7).
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more detailed analysis of the thermo-fluid dynamic field
is necessary and it will be performed in the next two
sections. In fact, due to the impulsive character of the
flow and to the considered geometry (flat plate) we need
to know if the unknowns of the problem, in particular the
temperature and the heat flux at the solid—fluid interface
are continuous or not. Moreover the thermal field is also
characterized in the (X, 7) plane by two regions with
different physical properties. It will be shown that the
slope of the characteristic lines (dX/dt) for the energy
equation where # = h(X) is lower than that of the mo-
mentum equation (see Fig. 2). Therefore, for X > /2
both velocity and temperature only depend on time (as-
ymptotic region): in this region they have the same be-
havior of the case of plate of infinite length. For X < /2
the velocity only depends on space while the temperature
depends on space and time (transition region).

The integration of the energy equation requires the
solution of two different problems for the two regions.
In the asymptotic region we shall solve a Cauchy’s
problem with initial conditions assigned at t = 0 which
is well posed in the whole asymptotic region. In the
transition region we shall solve a generalized Goursat
problem with one condition given on the characteristic
curve (for the energy) X = 0 and one condition imposed
on the non-characteristic curve (for the energy equation)
X =1/2.

The analysis of the results will be simplified by in-
troducing the similarity variables t/p* and X /p* that
enables the solution to only depend on one parameter
given by the product of fy and p?; we put § = 3t p?.

4. Asymptotic region

For X > t/2 the solution is independent of X thus
implying that the problem is equivalent to the one
studied in [5] (plate of infinite length) where the com-
plete Prandtl’s equations were analytically solved. In the
semi-infinite plate case it is necessary to find the solution
of the same problem at the first-order of our expansion
Eq. (7).

By adopting & = 24/7 as independent variable we can
re-write Eq. (16) as follows:

3

(hf]())h = =41, ?mq

1 1
Oh_zq1lz+h7q1 = 3irq1.- (17)
We derive the boundary conditions in the asymptotic
region at T = 0 by considering the energy balance in the
solid, that in an integral form is represented by Eq. (11).
It can be written in the form

(),

where G(1) = ffb T, dy. Our model leads to assume that
G is continuous at the initial time: this assumption is

compatible with a finite heat flux at the interface, as Eq.
(18). Furthermore, using Eq. (12), we obtain

1 b (0T,

-Gt)=Tw—5| = ) 19
5 3 ( dy )w (1)
which, expressed in terms of gy and ¢;, becomes

1 _ 2c1 q

560 =T (140 -5 10)). (20)

For 1 = 0~ the thermal field in the fluid is uniform with
the temperature equal to T,.. It follows:

_% =qox,  qu(07)=0. (21)

Hence, for © = 0™, the continuity of expression Eq. (20)
implies

q0(07) =

q(0") — %a qh'(((?:))p = Gome- (22)

For obtaining a second equation that enables us to de-
termine ¢o(0") and ¢,(0") we note that

hlir})l hqor = 0. (23)

In fact, if this limit would equal a constant x different
than zero, g, would locally behave «log 4, leading to an
infinite temperature along the whole plate at the initial
time. It follows, from the first of Eq. (17), that
q1(0%) = —go(0"). Thus the governing Eq. (17) can be
satisfied at t = 0" only if

QO(0+) =0, ¢ (0+) =0. (24)

These relations, together with the condition Eq. (22) (for
h— 0" qi(h)/h — qx(07)), give

w0 =0, u0) = =3 e 25)
It is interesting to note that these conditions lead to a
discontinuous temperature on the wall at the initial time
with an impulsive variation from 7, to 7,,. On the
contrary ¢, is continuous, although the heat flux (pro-
portional to ¢, /h — gy;, for T = 0) suddenly jumps from
0 to a value given by the initial condition on g,(0%).

The boundary conditions Eq. (25) define a well-posed
Cauchy problem in the asymptotic region: the solution
can be determined starting from t = 0" until the char-
acteristic line of the momentum equation (X = t/2) is
crossed.

We obtained the solution of Eq. (17) with initial
conditions Eq. (25) in analytical form in terms of the
confluent hypergeometric function. In Appendix A its
derivation is reported; here we summarize the result:

q1 = —[Cig;(s) + Casr(s)],

\/%q‘) = Ci [sg3(s) — s0g3(s0)] + Ca[l — r(s)],



A. Pozzi, R. Tognaccini | International Journal of Heat and Mass Transfer 44 (2001) 3281-3293 3287

) 3 1
- Sy =— — 2
s SO—O—\/;p,so 201\/5 (26)
2

2'272
(27)
. s 1352
gz(s)fexp _5 M(§7§75)>
la laa+1 ,
M ) =1+—— — =
(@5, =143+ 5 5778+

and the constants C;, C, (obtained by the initial con-
ditions):

G0 n G

C =— 7
! 25(s0)  s0g5(s0)

(28)
_ gT(So) Goco
25(s0) [so + & (s0)/50g3(s0)]”

2

We shall denote by g, the expression of ¢y thus ob-
tained. An accurate analysis of this solution is not only
important for describing the thermo-fluid dynamic field
in this region, but also for determining the solution in
the transition region: in fact in this region we shall
represent go,s in a power series and we need to know the
properties of the series as summarized in Appendix A.

The solution is convergent VA because the exponen-
tial and the confluent hypergeometric function M have
both an infinite radius of convergence. For large time
values the analytical expression can be simplified by
adopting the asymptotic behavior of M (see Eq. (A.13)
of Appendix A)

1

1 *
—5 B~ (29)

s> 1:g)(s) = 2

The temperature at the solid—fluid interface (7,,/7,) is
presented in Fig. 3 versus 7/p? for different values of §
and M, = 3. At the initial time the temperature impul-
sively reaches 7,,, then it decreases until a minimum
value; for large values of t/p* it asymptotically ap-
proaches the steady regime which is characterized by
thermal equilibrium in the solid (7; = 7,) and adiabatic
wall conditions at the solid—fluid interface. The mini-
mum wall temperature, the time at which it is reached
and the time at which the steady conditions are practi-
cally obtained are ruled by the parameter J.
The non-dimensional heat flux
p LT, 2¢y

Jq:m T :(h/p)ql (30)

is proposed in Fig. 4, again parametrized with J.

0.2

O 1 1 1 1 1 1 1 1 1

01 2 3 4 5 6 7 8 9 10
T/p?

Fig. 3. Asymptotic region. Temperature at the solid-fluid in-

terface versus time. M, = 3, 6 = 0.01, 1.0, 10. Continuous line

— present first-order solution; dashed lines — “exact” reference
solution [5].

o
o o
T T
1 1

5 6 7 8 9 10
T/p?

Fig. 4. Asymptotic region. Heat flux at the solid—fluid interface

versus time. M, =3, 6 =0.01, 1.0, 10. Continuous line —

present first-order solution; dashed lines — “exact” reference
solution [5].

In both figures the present results are compared with
the “exact” reference solution [5]. The agreement is good
with a maximum error of 3% in the wall temperature
distribution.
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5. Transition region

For X < 1/2 (h=+/8X) the effects of the leading
edge of the plate are relevant and the temperature de-
pends both on X and t. In this zone there is a transition
of the solution from the unsteady behavior to the lim-
iting solution (t — oo) of steady flow over an adiabatic
semi-infinite flat plate of infinitely small thickness and
thermal equilibrium in the solid plate.

The two families of characteristic curves of Eq. (16)
are:

X = CZC;CIT +const, X = const, (31)
1

with (c; —e¢1)/e1 =1 —+/2. The characteristic line

passing through the origin X = (¢; — ¢;)/c; has a slope

~ 0.41 which is less than 0.5 (slope of the characteristic

for the momentum equation) and is completely con-

tained in the transition region.

5.1. The equations and the boundary conditions

In order to write the Eq. (16) in a simpler form it is
useful to adopt the canonical independent variables ex-
pressed as follows:

V8X T cy {

h=""2 0=—— : 32
P P (a—c)p? (32)
Being

0 10 0 140 a0y gy
ot pr a0’ X pP\ioh c—c 00)

the Eq. (16) reduce to:

ho) - 3
(hq0>;}_ 2(02—01)q17 2c1hq00 q19 = 6q1. (34)

In Fig. 5 the regions in which the solution develops are
mapped into the (h, 0) plane; in particular the charac-
teristic of the momentum equation separating the as-
ymptotic and transition regions is transformed into the
parabola 0 = —d,h* with d, = [¢;/(c; — 1) — 2]/8.

By defining as new unknown § = /g, and eliminating
¢ in Eq. (34), we obtain the second-order hyperbolic
equation governing the problem in the transition region

Gio + 04; +vgy = 0, (35)

with v =3/[4(c2 — ¢1)].

The solution is uniquely defined by assigning one
condition on a characteristic curve (X = 0) and one
condition on the non-characteristic curve (for the energy
equation) X = 7/2 (generalized Goursat problem).

Although at X = 0 even the boundary layer Eq. (2)
are singular, it is possible to derive, according to these
equations, a boundary condition which is sufficiently

1

09 | 1 1
08 | | 1
07 t :
06 | 1

05 r 1

o

04 | 1

0.3 ]

0.2 r 1

0.1 4

Fig. 5. (ft,@) plane.

realistic. In fact, if the temperature at the plate leading
edge is finite then (2(X = 0) = 0)

4(0,0) = h(0)go(0,0) =0, (36)

this is the first boundary condition.

The second condition is obtained by imposing the
continuity of the temperature distribution (go) on
X =1/2 (coupling of the temperature between the
asymptotic and transition region)

(x =3.%) = Waali(0] =2, [Zaon (). )

In the isothermal case [7] the present authors found a
singular behavior of the solution in the origin of the (X,
1) plane. It is interesting to verify if a singularity is
present in the adiabatic case too. An integration of the
first of Eq. (34) leads to

h
=57LA/ ¢ d, (38)
h 2(c;—ci)h Jo

where « is an arbitrary constant. A finite value of the
temperature at the wall implies k=0 (g0 =0) and
¢1(07,7) =0 in agreement with relations Eq. (24) valid
in the asymptotic region. Thus the singularity is not
present in the adiabatic case. The temperature at the
leading edge of the plate is constant with respect to the
time and equals 7.
The Eq. (35) can be further simplified by defining

90

£(h,0) = exp (59 n viz)g(iz, 0) (39)
obtaining
Jio—kf =0, (40)
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with k£ = vé and the boundary conditions given by
h=0: £(0,0) = §(0,0) exp (30) = 0,
0 = —d\i*: f(h,—dh*) (41)

= Gun(h) exp (= 0 +vi) = fos(h),

where f,s is the function f evaluated in the asymptotic
region.

5.2. Solution of the problem

In order to find the function f(fz7 0) by means of Eq.
(40) with boundary conditions Eq. (41) we use the La-
place’s transformation. This method, in its standard
form, requires the knowledge of the two functions
7£(0,0) and f(h,0): the first condition is known, but,
instead of the second one, we know f along the char-
acteristic curve of the momentum equation. We find the
solution in two steps. At first we determine f(h,0) in
terms of f (fz,O) by using the Laplace’s transformation
technique and the boundary condition at h = 0. Subse-
quently we find the function f(h,0) by imposing the
second boundary condition.

By denoting with F(s, 0) = ;[ (h,0)] the Laplace’s
transform of the unknown f, the equation transformed
of Eq. (40) reduces to

sFy — kFF = 07 (42)

with solution
F(s,@):F(s,O){exp(lch) 71} + F(s,0). (43)

The inverse transform of the term within square brack-
ets is [13]

;| exp KoY —1 = kOE, (—kOh), (44)
o (30) 1]

where the special function E| (¢) is related to the Bessel’s
function J;

JU(P) = (/2)E\(d/4). (45)

By using the convolution theorem we have the following
form for the solution of the present problem:

ﬂAw:ﬂam+wAfKMAFw@—@ma
(46)

£ (h,0) is computed by imposing the matching with the
asymptotic solution.

We represent both f(h,0) and f,(h) by means of a
power series

f(h,0) = i all,  fu(h) = iA,-/%f (47)
0 0

(note that the radius of convergence of the series rep-
resenting g, is infinite).

The matching of the solution on 0 = —d,* provides
a relation with the following structure

Y Al = Y ah' — kd, Y Bi(ag, ... a1 )k (48)
0 0 0

Since the B; only depend on the a; with j < i the un-
known coefficients @; can be recursively computed by
imposing the equality of the coefficients with the same
power of h:

a; — kd\B;_, = A;. (49)

The expression of the coefficients 4; and B, are derived in
Appendix B.

5.3. Analysis of the results

The temperature distributions at the solid-fluid in-
terface are displayed in Figs. 6-8, respectively for 6 =1,
0 =0.2 and 6 = 0.01 and parametrized for different time
values (M, = 3). In the case 6 = 1 the solution quickly
approaches the steady condition of T, = T; for smaller
values of J the steady state is reached for much larger
t/p* values.

The heat fluxes at the same conditions are presented
in Figs. 9-11. In the limits of the present first-order
approximation the heat flux is discontinuous at the
boundary between the transition and asymptotic re-
gions. It is characterized by a peak value decreasing and
moving from the leading edge of the plate as time grows.

—|g—||_‘

g

o
©

04 r T

02 T

O 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Xlp®
Fig. 6. Transition region, M,, = 3, 6 = 1. Temperature distri-

bution at the solid-fluid interface along the plate. t/p> = 1.0,
6.8, 12.6, 18.4, 24.2, 30.0. Present first-order solution.
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027 1

O 1 1 1 1 1 1
0 2 4 6 8 10 12 14

XIp?
Fig. 7. Transition region, M., = 3, 6 = 0.2. Temperature dis-

tribution at the solid-fluid interface along the plate. t/p* = 1.0,
6.8, 12.6, 18.4, 24.2, 30.0. Present first-order solution.

1 T T T T T T
T
Taw
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02 1
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0 2 4 6 8 10 12 14

X/p?

Fig. 8. Transition region, M., = 3, 6 = 0.01. Temperature dis-
tribution at the solid—fluid interface along the plate. t/p* = 1.0,
6.8, 12.6, 18.4, 24.2, 30.0. Present first-order solution.

For small values of J, which is typical of air-metal
interfaces, J; weakly depends on time in the transition
region (see Fig. 11) with a peak value positioned at the
leading edge in practice.

As shown in [7], the knowledge of gy and g, allows
the determination of the temperature and velocity pro-
files in the boundary layer by using any number of terms

1.6 T T T T T T
4
14 r T
127t T
1t 4
08| T
06 T

0.4 T

02r 7

0 2 4 6 8 10 12 14
X/p?

Fig. 9. Transition region, M., = 3, § = 1. Heat flux distribution
at the solid—fluid interface along the plate. t/p* = 1.0, 6.8, 12.6,
18.4, 24.2, 30.0. Present first-order solution.

16 T T T T T T
‘Jq1.4 - T
127t T
1} i
08r T
0.6

0.4

0.2

0 2 4 6 8 10 12 14

Fig. 10. Transition region, M, = 3, 6 = 0.2. Heat flux distri-
bution at the solid-fluid interface along the plate. t/p* = 1.0,
6.8, 12.6, 18.4, 24.2, 30.0. Present first-order solution.

in Eq. (7). For instance, a third-order description of the
temperature profiles is obtained by the relations
ST(X,Z,7) = (X, 0)(1 - Z°) + 1 (X, 1)(Z — Z°)
+ qZ(Xv T)(ZZ - Z3)’
T
(.20 = 1+ 57 (X, 2,0)] - qu 2%,
(50)
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08| T
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0 2 4 6 8 10 12 14

X/p?

Fig. 11. Transition region, M., = 3, 6 = 0.01. Heat flux distri-
bution at the solid-fluid interface along the plate. t/p* = 1.0,
6.8, 12.6, 18.4, 24.2, 30.0. Present first-order solution.

with

PO o, 0) (51)

CIZ(X7T) = 8c
1

6. Conclusions

We have presented a first-order solution of the
thermo-fluid dynamic problem that arises when a fluid is
impulsively accelerated at high speed over a thick semi-
infinite flat plate, with its unwetted side adiabatic. This
condition of zero heat flux also represents the symmet-
rical flow around a plate.

The symmetry condition of zero heat flux on the axis
of the plate leads to a completely different solution when
compared to a previously analyzed case of constant
temperature. In fact both the mathematical structure of
the governing equation and the physics of the
phenomenon changed. The second-order hyperbolic
equation, instead of a first-order one, required the de-
velopment of a new method of solution.

The governing equation has been solved by an exact
analytical method based on the Laplace’s transforma-
tion technique. The task was non-trivial due to the
mathematical difficulties induced by the presence of two
regions in which the scale factor 4 of the dynamic
boundary layer has different expressions. The equation
has been separately solved in the two zones by a proper
boundary condition coupling the solutions along the
characteristic line of the momentum equation.

The two regions evidenced in the (X, t) plane are
characterized by different properties from a physical
viewpoint. For small time values, or equivalently for
large X, the flow only depends on time and is not
influenced by the plate leading edge (asymptotic re-
gion). The problem is here equivalent to the case of a
plate of infinite length already solved by an ‘“‘exact”
method. The comparisons of the solutions in this re-
gion allowed to verify the good accuracy of the pre-
sent integral approach. Near the leading edge (with
our approximations) or for very large time values, the
solutions depend both on space and time (transition
region). In this region there are not reference solutions
and the capability to analyze this zone is a main
contribution of the present work. For infinite values
of time the solution in the fluid tends toward the
classical case of steady flow over an adiabatic semi-
infinite plate.

Two non-dimensional parameters #; (ratio of the
characteristic times in the fluid and in the solid) and p
(related to the thermal conductivities of the solid and of
the fluid, to the Reynolds number and to the slenderness
of the plate) rule the phenomenon such as for the iso-
thermal condition.
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Appendix A. Analytical solution in the asymptotic region

With the definition of the new variables

s =150+ \/gs g(s) = (hqo),, (A1)

where sy = 3/[2¢14/0/2], the differential problem Eq.
(17) with the boundary conditions Eq. (25) reduces to
the linear second-order homogeneous equation

g +sg' +2g=0, (A.2)

with the initial conditions
, 3
g(S()) = 07 g (SO) = Tqu (A3)
C1

We solved Eq. (A.2) by the invariant method, which is
here briefly recalled. The invariant of a general second-
order linear and homogeneous differential equation of
the type

W a3y + ax(x)y =0 (A4)
is
1) = ax(x) - A AL (A5)
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By denoting
W (x) = exp {f /a.(x) dx} (A.6)

the Wronskian function of Eq. (A.4) and with Y(x) the
solution of the equation

Y'+1(x)Y =0, (A7)
then the solution of Eq. (A.4) is
W) = WY (). (A8)

The invariant and the Wronskian equation of the form
(A.2) are

3 X x?

An equation with the same invariant of Eq. (A.9) is the
confluent hypergeometric equation

&) + (b= 8y(&) —ay(é) =0, (A.10)
which has the solution

y(&) =AM (a,b, &) + BE"M(a—b+1,1 - b,&),
(A.11)

where M is the confluent hypergeometric function [12],
which can be represented by means of a series as fol-
lows:

la laa+1,

M(a,b,§)=1+izé+izb+lg + e (AIZ)

This series has an infinite radius of convergence and its

asymptotic behavior is given by

a—b r (b )
I'(a)’

E—o00: M(a,b, &) ~exp(é)E (A.13)

where I' is the gamma function.
By defining s = k& the Eq. (A.10) is transformed
into

sy (s) + {c+b —1- (%)1/8} csy'(s) — a(%)l/a
(A.14)

which has the solution

s\ /¢
y(s) =AM {mb7 (;) }
(-t/eps | g — b (5)
+ Bs M[a b+1,1-b, (K) } (A.15)
The invariant of Eq. (A.14) is

1 :
165) =45 (H + Ks"¢ + Ls"°), (A.16)

where

1 , 2
H:—c—z(c—i—b—l) +E(c+b—l)7

1 1/c a 2 2
K:(E) [—4C—2+§(C+b—2a)—; ; (A.17)

1 1 2/c
L=——(-) .

=(5)
By imposing the equality of Egs. (A.16) and (A.9) we
obtain

a=-3, b=c=g, k=2 (A.18)

Since ¥ = W{l/zy (see Eq. (A.8)) with I, the Wronskian
function of Eq. (A.14), it is possible to obtain the general
solution of our problem g = WY where W, is specified
in relations Eq. (A.9):

g(s):exp(fg) {AM(*%,%,%)‘FE&}. (A.19)

The unknowns ¢, and ¢, are related to g by

5,\ s
\/;hqo :/ g(s)ds, q=-g. (A.20)
S0

From the Eq. (A.2) we have

/g(s) ds = —g’' — sg + const, (A.21)
hence, taking into account the relation
(%M(a,b, &) :gM(a+ 1,b+1,¢) (A.22)

and computing the constants 4 and B by the boundary
conditions Eq. (A.3) we obtain the solution as specified
in the relations Eq. (26).

Appendix B. Derivation of the coefficients 4; and B;

By eliminating ¢, in the Eq. (17) governing the
asymptotic region and defining /' = f,;/h we obtain
Zilzf" + (Enil + Enh® + E13i13)f7

+ (Ez() +E21il + Ezzl:lz “rE‘zgilz + E24il4)f_‘ - 0, (Bl)

where

3
E“ :27 E‘12:—4V-‘rcf7 E11:5(8d1+1)7
1

. 3
EZO = 727 E2| = 72\), E22 = 2\’2 + b(gdl + 1) — C—v,
1

d
E23 :—5(8d1\)—6—l+ V), E24:25d1(4d1 +1)
]



A. Pozzi, R. Tognaccini | International Journal of Heat and Mass Transfer 44 (2001) 3281-3293 3293

The boundary conditions Eq. (25) in terms of the new
unknown f are

f0)=0, 7(0)=—

=— . B.2
4C1 400 ( )

Provided the position /' = °° 4,4, we can recursively
compute 4; by substituting this relation into Eq. (B.1)
obtaining

4= — {[Elz(i — 1)+ Exn]di + [Exn+ Eis(i — 2)]4i
+ End; s+ E24,<I,-_4}/[2i(i — 1) + Eni + Ex),
(B.3)
with 4; = 0 Vj < 0. The coefficients 4; in f,, = S0 4;h'
are obviously given by
Al' :14_,',1. (B4)

The coefficients B; in Eq. (48) are defined as follows:

/f E[kdy i (h — &) dé = ch f:Biili.
0

Since the power series expression of the special function
E; [13] is

> (B6)
0

we have the opportunity to solve the integral appearing
into Eq. (B.5). In fact

/0 F(EOE kdii? (5 — 8)) dé

_ /O'h S ad'S el - kdiih - O de, (B.7)

with
1

[ (B8)

€ =

Furthermore, the Cauchy’s theorem on the product of
two series

dowd Bi=d on o= b, (B.9)
0 0 0 i=0
and the relation
b B in —i)! .
W(h—¢)' " dé=——T2p! B.10
| eti—eras =T (8.10)

provide

Zae,, i(—kdy)" (( — )) R (B.11)

Finally, the comparison of relations Eqs. (B.11) and
(B.5) allows the computation of B;.
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